U) NARYLAND UNIY COLLEGE PARK
SCIENCES AND STATISTICS S KO
UNCLASSIFIED UM/MSS-86/4 N@0@14-84-K-0301

DEPT
ET A

OF M
AL.

" AD-A169 896  NOTE ON A CHRRHCTERIZHTION OF EXPONENTIEL DéETgIBUTIONS
L

6
F/G 12/1

11

NL




AL T

|

S

o a s e i,

AN a8, 0,0 N

P

.
Nt Bot 8,

MRS

N\

I

I
I

hzs 22

= wer |z
s g 22
el

= e

11

m—
t—
e —
——

125

O —
———

- L]
el 154

s

Y
. '_-’_- Rrd

(} _'i A

S
el
L) &8

l J

cv .
"

‘J;t?

T =

“.-3.,‘
e
LA .« 4

. )

S

mee T,
0

o o ny oy &-
'a._ﬁ('f'l:",f‘ "..'.

0

o

PR

¥ |

1

.
/ " ..'.'f

L’
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Let U be uniformly distributed on (0.1) and let Y and véy be ran-
dom vectors with nonnegative components, U.Y and Y"' independent. Itis
shown that the relation Y =U (Y +Y") Is satisfied if and only if the com-
ponents of ¥ are multiples of a single exponentially distributed random
variable.

1. One-dimensional case

In the solution to problem 159 in [3] the following question is answered. Let U.Y ") and
Y@ be independent random variables, U uniformly distributed on (0.1), YV and Y® dis-
tributed as Y. For what distributions of Y is it true that

1 rEuwW+y®) ?
There is a two-parameter family of solutions (cf. [3]). but under the additional assump-

tion that Y is nonnegative, (1) characterizes the exponential distributions. We state this
result as a proposition, and give a proof along the lines of the proof in [3].

Proposition 1. Let Y 2 0 with probability 1 and let Y satisfy condition (1). Then Y has an
exponential distribution (possibly zoncentrated at zero).

Proof If ¢ denotes the Laplace-Stieltjes transform (LST) of the distribution of Y, i.e.
¢(s)=E exp(—sY ), then (1) is equivalent to

@ p)=f ' $2(us Mdu = 1 [ $2(c )t

Since ¢ and ¢? are LST's, they are differentiable for s >0. Differentiation of (2) yields
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Substitution of ¢ = (f +1)~! leads to0 i‘ }\-,-;;11-:1 ity Ccdérs

F'GHWf(s)=1/s ’

|

Lt
with solution f (s) = as and so \ﬂ o \ : h
-(

=1
@) ¢G)= Tta

where a 2 0. This proves the proposition 0
|

In exactly the same way the following generalization can be proved.

Proposition 2. If U, YW, ... ,Y?¥) are independent, U uniformly distributed on (0,1) and

the YU) distributed as ¥, then

() YLu@Wws. +ywen)

if and only if the LST ¢ of Y is of the form

1

6 __'

(6) ¢n(s)= T7a s UF

wherea2o.

Remark. Since exp(—s!¥) is an infinitely divisible (even stable; see [1]. p. 448) LST it fol-

lows from Theorem 2 in [4] that ¢ in (6) is indeed the LST of a (infinitely divisible)

probability distribution baving no moments, of course. One can even make N a continuous

variable: S(1)E U S(c+1). where SC) is a process with nonnegative stationary and

independent increments. Then S(1) must have an LST of the form (1+a s¥*)"! with

|
s

An other generalization is considered in the next section.

i-dimension

Now let Y be an n-dimensional random vector with nonnegative components:

Y=(Yl,...,1.) »

ARl i b I e

and as before let U.Y™ and Y® be independent with U uniform on (0,1) and YV and
Y@ distributed as Y. Now let

y LU x4y,
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where addition is component-wise, and let the n-dimensional LST ¢ be defined by

M ¢Gy,....5)=Eexpl-F 5,Y,)
J=1

Then in exactly the same way as in (2) we have

1
O(sy,....85)= [ o (us,, . .. ,us, Mdu,

or putting 5, =a, s .,

s¢pla,s,...,aps)= [ ¢%a,t, ..., a,t)dt.

Writing ¢(a;s, . . ,a,5)= @(s) forall ae R} we obtain

sPols)= [' b2(e)de.

the same equation as (2). It follows that for all a€ R} We have

(8) ¢u(s)=o(ays,...,ans)= (Q+ala)s)™ ¥

where a (&) = al«a;, . . . ,a, ) by the definition of ¢, satisfies

9) alsay,...,sa,)=salay,...,a,).

i.e. a(a) is homogeneous of degreeone. We are now ready to prove

Proposition 3. A random vector Y =(Y;.....Y, ) with ¥/ 20 (j=1....n) satisfies

(10) ¥ Lu@wsr®)

with U, Y™ and Y@ independent, U uniform on (0.1) and Y® £y@Ly if and only if
the LST ¢ of Y is of the form

1
14a,5,+ - - +a, s,

(11) ¢(sy,....5)=

where a;20,...,a,20.

Proof. From (7) and (8) with s; =a;, s and (9) it follows that for all (a;, . . . , &, JERS
(12) ﬂxyx"’ ce +G.Y,. g a(a,, . e ,a,.)X.
where X is exponentially distributed with expectation one and Y, . . . , ¥,, are exponential

with expectations a(1.0,...,0),...,a(0,...,0,1). Taking expectations in (11) we
obtain

T R S O L P S L S -~y ,r..a
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(13) «;a(10,...,0)+ - +a,a (0,...,0.)=a(ay,...,a,).
If we put a(1,0,...,0)=a,,...,a(0,...,0,1)=a,, then (11) follows from (8) and
(13). :

Remark 1. From proposition 3 it follows that the only random vectors Y =(Y,,...,Y,)
satisfying (10) are of the from

Y=(a,X,....a, X).

e T T TR N

where X is an exponentially distributed random variable with expectation one. This
means that Y has a (singular) exponential distribution concentrated on the ray with direc-
! tion (a,, .. .,a,) through the origin. So, none of the classical multivariate distributions,
such as described in [2] satisfy (10).

Remark 2. One could also generalize (5) to n-dimensional vectors; this leads to results
similar to proposition 3.

Remark 3. It the condition Y ;20....Y, 20 is dropped than more general solutions then
(11) are possible. For n =2, for instance, (10) is satisfied for Y with a characteristic func- ;
tion of the form

W(t 1.‘2) = (1+do\/‘12+tlz —a,itl—azitz)".

with a2 0.a; and a; real. A similar situation occurs for n =1 (cf. [3]).
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